Faýl:Moon elevation.stl
Size of this PNG preview of this STL file: 800 × 600 piksel. Other resolutions: 320 × 240 piksel | 640 × 480 piksel | 1 024 × 768 piksel | 1 280 × 960 piksel | 2 560 × 1 920 piksel | 5 120 × 3 840 piksel.
Original faýl (5 120 × 2 880 piksel, faýlyň ölçegi: 25,07 MB, MIME tipli: application/sla)
Bu faýl Wikimedia Commons toplaýjysyndan, özem başga taslamalarda ulanylýan bolmagy mümkin. Onuň faýl düşündiriş sahypasyndaky maglumatlar aşakda görkezilýär.
View Moon elevation.stl on viewstl.com
Gysgaça düşündiriş
DüşündirişMoon elevation.stl |
English: Moon 10-times-exaggerated elevation model by CMG Lee using LRO LOLA data. |
Sene | |
Çeşme | Öz işi (eseri) |
Awtor | Cmglee |
Beýleki wersiýalar |
Python source
#!/usr/bin/env python
exaggeration = 10
header = ('Moon %s-times-exaggerated elevation model by CMG Lee using LRO LOLA data.'
% (exaggeration))
path_png_alt = 'moon_elevation.png' ## 1-channel equirectangular PNG
luma_datum = 128 ## image intensity level (of 0-255) of datum
radius_datum = 1737.4 ## mean radius of zero level in km
f_wgs84 = 1 - 1736.0 / 1737.4 ## WGS84 flattening factor
km_per_luma = (9.094 + 10.786) / 255 * exaggeration ## min and max elevations in km
scale = 1e-2 ## overall scale of model in km^-1
lat_offset = 0.0 / 12 ## rotation around planet axis in revolutions
n_division = 200 ## each cubic face divided into n_division^2 squares
class Png:
def __init__(self, path):
(self.width, self.height, self.pixels, self.metadatas) = png.Reader(path).read_flat()
def __str__(self): return str((self.width, self.height, len(self.pixels), self.metadatas))
import time, re, math, struct, png
time.start = time.time()
def log(string): print('%6.3fs\t%s' % (time.time() - time.start, string))
def fmt(string): ## string.format(**vars()) using tags {expression!format} by CMG Lee
def f(tag): i_sep = tag.rfind('!'); return (re.sub('\.0+$', '', str(eval(tag[1:-1])))
if (i_sep < 0) else ('{:%s}' % tag[i_sep + 1:-1]).format(eval(tag[1:i_sep])))
return (re.sub(r'(?<!{){[^{}]+}', lambda m:f(m.group()), string)
.replace('{{', '{').replace('}}', '}'))
def append(obj, string): return obj.append(fmt(string))
def tabbify(cellss, separator='|'):
cellpadss = [list(rows) + [''] * (len(max(cellss, key=len)) - len(rows)) for rows in cellss]
fmts = ['%%%ds' % (max([len(str(cell)) for cell in cols])) for cols in zip(*cellpadss)]
return '\n'.join([separator.join(fmts) % tuple(rows) for rows in cellpadss])
def hex_rgb(colour): ## convert [#]RGB to #RRGGBB and [#]RRGGBB to #RRGGBB
return '#%s' % (colour if len(colour) > 4 else ''.join([c * 2 for c in colour])).lstrip('#')
def viscam_colour(colour):
colour_hex = hex_rgb(colour)
colour_top5bits = [int(colour_hex[i:i+2], 16) >> 3 for i in range(1,7,2)]
return (1 << 15) + (colour_top5bits[0] << 10) + (colour_top5bits[1] << 5) + colour_top5bits[2]
def roundm(x, multiple=1):
if (isinstance(x, tuple)): return tuple(roundm(list(x), multiple))
elif (isinstance(x, list )): return [roundm(x_i, multiple) for x_i in x]
else: return int(math.floor(float(x) / multiple + 0.5)) * multiple
def average(xs): return None if (len(xs) == 0) else float(sum(xs)) / len(xs)
def flatten(lss): return [l for ls in lss for l in ls]
def rotate(facetss, degs): ## around x then y then z axes
(deg_x,deg_y,deg_z) = degs
(sin_x,cos_x) = (math.sin(math.radians(deg_x)), math.cos(math.radians(deg_x)))
(sin_y,cos_y) = (math.sin(math.radians(deg_y)), math.cos(math.radians(deg_y)))
(sin_z,cos_z) = (math.sin(math.radians(deg_z)), math.cos(math.radians(deg_z)))
facet_rotatess = []
for facets in facetss:
facet_rotates = []
for i_point in range(4):
(x, y, z) = [facets[3 * i_point + i_xyz] for i_xyz in range(3)]
if (x is None or y is None or z is None):
facet_rotates += [x, y, z]
else:
(y, z) = (y * cos_x - z * sin_x, y * sin_x + z * cos_x) ## rotate about x
(x, z) = (x * cos_y + z * sin_y, -x * sin_y + z * cos_y) ## rotate about y
(x, y) = (x * cos_z - y * sin_z, x * sin_z + y * cos_z) ## rotate about z
facet_rotates += [round(value, 9) for value in [x, y, z]]
facet_rotatess.append(facet_rotates)
return facet_rotatess
def translate(facetss, ds): ## ds = (dx,dy,dz)
return [facets[:3] + [facets[3 * i_point + i_xyz] + ds[i_xyz]
for i_point in range(1,4) for i_xyz in range(3)]
for facets in facetss]
def flip(facetss):
return [facets[:3] + facets[6:9] + facets[3:6] + facets[9:] for facets in facetss]
def cube_xyz_to_sphere_xyz(cube_xyzs):
(x,y,z) = [float(xyz) for xyz in cube_xyzs]
(x_squared,y_squared,z_squared) = (x * x,y * y,z * z)
return (x * (1 - (y_squared + z_squared) / 2 + y_squared * z_squared / 3) ** 0.5,
y * (1 - (x_squared + z_squared) / 2 + x_squared * z_squared / 3) ** 0.5,
z * (1 - (y_squared + x_squared) / 2 + y_squared * x_squared / 3) ** 0.5)
def sphere_xyz_to_lla(sphere_xyzs):
(x,y,z) = sphere_xyzs
alt = (x * x + y * y + z * z) ** 0.5
lon = math.atan2(y, x)
lat = math.asin(z / alt)
return (lat,lon,alt)
deg_90 = math.pi / 2
def find_alt(lat_lons, altss):
(lat,lon) = lat_lons
if (lat == deg_90): alt = average(altss[ 0])
elif (lat == -deg_90): alt = average(altss[-1])
else:
(width,height) = (len(altss[0]),len(altss))
x = (0.5 + lon / (deg_90 * 4) + lat_offset) * width
y = (0.5 - lat / (deg_90 * 2) ) * height
(x_int,y_int) = (int(x) , int(y) )
(x_dec,y_dec) = (x - x_int, y - y_int)
(x0,x1) = (x_int % width , (x_int + 1) % width )
(y0,y1) = (y_int % height, (y_int + 1) % height)
alt = ((altss[y0][x0] * (1 - x_dec) + altss[y1][x0] * x_dec) * (1 - y_dec) +
(altss[y0][x1] * (1 - x_dec) + altss[y1][x1] * x_dec) * y_dec)
# print(map(math.degrees, lat_lons), y,x, alt)
return alt
def radius_wgs84(lat):
if (lat in radius_wgs84.cachess): return radius_wgs84.cachess[lat]
(sin_lat, cos_lat) = (math.sin(lat), math.cos(lat))
ff = (1 - f_wgs84) ** 2
c = 1 / (cos_lat ** 2 + ff * sin_lat ** 2) ** 0.5
s = c * ff
radius_c_s_s = (radius_datum * c, radius_datum * s)
radius_wgs84.cachess[lat] = radius_c_s_s
return radius_c_s_s
radius_wgs84.cachess = {}
def lla_to_sphere_xyz(llas):
(lat,lon,alt) = llas
(sin_lat,sin_lon) = (math.sin(lat),math.sin(lon))
(cos_lat,cos_lon) = (math.cos(lat),math.cos(lon))
(radius_c, radius_s) = [(c_s_radius + alt * km_per_luma) * scale
for c_s_radius in radius_wgs84(lat)]
return (radius_c * cos_lat * cos_lon,radius_c * cos_lat * sin_lon,radius_s * sin_lat)
## cube xyz -> smooth sphere xyz -> sphere ll -> image xy -> bumpy sphere xyz
def cube_xyz_alt_to_xyza(cube_xyzs, altss):
return sphere_xyz_alt_to_xyza(cube_xyz_to_sphere_xyz(cube_xyzs), altss)
def sphere_xyz_alt_to_xyza(sphere_xyzs, altss):
(lat,lon,alt) = sphere_xyz_to_lla(sphere_xyzs)
alt = find_alt((lat,lon), altss)
lla_alts = [list(lla_to_sphere_xyz((lat,lon,alt))), alt]
return lla_alts
log("Read elevation data")
png_alt = Png(path_png_alt)
if (png_alt.metadatas['planes'] != 1): print("%s not 1-channel PNG" % (path_png_alt)); sys.exit(1)
log(png_alt)
altss = [[png_alt.pixels[png_alt.width * y + x] - luma_datum
for x in range(png_alt.width)] for y in range(png_alt.height)] ## altss[y][x]
log("Find vertices")
k = 2.0 / n_division
range_k = range(n_division + 1)
face_vertex_llassss = [ ## [0=top][i_y][i_x][xyz,alt]
[[cube_xyz_alt_to_xyza((x*k-1,y*k-1, 1), altss) for y in range_k] for x in range_k],
[[cube_xyz_alt_to_xyza((x*k-1, -1,y*k-1), altss) for y in range_k] for x in range_k],
[[cube_xyz_alt_to_xyza(( 1,x*k-1,y*k-1), altss) for y in range_k] for x in range_k],
[[cube_xyz_alt_to_xyza((y*k-1,x*k-1, -1), altss) for y in range_k] for x in range_k],
[[cube_xyz_alt_to_xyza((y*k-1, 1,x*k-1), altss) for y in range_k] for x in range_k],
[[cube_xyz_alt_to_xyza(( -1,y*k-1,x*k-1), altss) for y in range_k] for x in range_k],
]
log("Add facets")
facetss = []
for (i_face,face_vertex_llasss) in enumerate(face_vertex_llassss):
for v in range(n_division):
for u in range(n_division):
(xyz00, alt00) = face_vertex_llasss[v ][u ]
(xyz01, alt01) = face_vertex_llasss[v ][u + 1]
(xyz10, alt10) = face_vertex_llasss[v + 1][u ]
(xyz11, alt11) = face_vertex_llasss[v + 1][u + 1]
(xyz_m, alt_m) = sphere_xyz_alt_to_xyza([average(xyzs) for xyzs in
zip(*(xyz00,xyz01,xyz10,xyz11))], altss)
if (alt_m > max(alt00,alt01,alt10,alt11) or alt_m < min(alt00,alt01,alt10,alt11)):
facetss.append([None,0,0] + xyz_m + xyz00 + xyz10)
facetss.append([None,0,0] + xyz_m + xyz10 + xyz11)
facetss.append([None,0,0] + xyz_m + xyz11 + xyz01)
facetss.append([None,0,0] + xyz_m + xyz01 + xyz00)
else:
if (abs(alt00 - alt11) < abs(alt01 - alt10)):
facetss.append([None,0,0] + xyz00 + xyz10 + xyz11)
facetss.append([None,0,0] + xyz11 + xyz01 + xyz00)
else:
facetss.append([None,0,0] + xyz10 + xyz11 + xyz01)
facetss.append([None,0,0] + xyz01 + xyz00 + xyz10)
log("Calculate normals")
for facets in facetss:
if (facets[0] is None or facets[1] is None or facets[2] is None):
us = [facets[i_xyz + 9] - facets[i_xyz + 6] for i_xyz in range(3)]
vs = [facets[i_xyz + 6] - facets[i_xyz + 3] for i_xyz in range(3)]
normals = [us[1]*vs[2] - us[2]*vs[1], us[2]*vs[0] - us[0]*vs[2], us[0]*vs[1] - us[1]*vs[0]]
normal_length = sum([component * component for component in normals]) ** 0.5
facets[:3] = [-round(component / normal_length, 10) for component in normals]
# log(tabbify([['N%s' % (xyz ) for xyz in list('xyz')] +
# ['%s%d' % (xyz, n) for n in range(3) for xyz in list('XYZ')] + ['RGB']] + facetss))
log("Compile STL")
outss = ([[('STL\n\n%-73s\n\n' % (header[:73])).encode('utf-8'), struct.pack('<L',len(facetss))]] +
[[struct.pack('<f',float(value)) for value in facets[:12]] +
[struct.pack('<H',0 if (len(facets) <= 12) else
viscam_colour(facets[12]))] for facets in facetss])
out = b''.join([bytes(out) for outs in outss for out in outs])
# out += ('\n\n## Python script to generate STL\n\n%s\n' % (open(__file__).read())).encode('utf-8')
log("Write STL")
with open(__file__[:__file__.rfind('.')] + '.stl', 'wb') as f_out: f_out.write(out)
log("#bytes:%d\t#facets:%d\ttitle:\"%-73s\"" % (len(out), len(facetss), header[:73]))
Lisenzirleme
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- Siz erkin:
- paýlaşyň – iş göçüriň, paýlaň we gowşuryň
- goşuşdyryp dörediň – iş adaptirläň
- Aşakdaky şertlere laýyklykda:
- salgylanma – Esere awtor ýa-da lisenziýa eýesi tarapyndan görkezilen (ýöne sizi ýa-da eseri ulanmaklygyňyzy goldaýandyklaryny öňe sürmeýän) görnüşde salgylanmalydyr.
- meňzeş paýlaşma – Bu eseri üýtgeden, öwüren ýa-da bu esere esaslanýan başga bir eser döreden ýagdaýyňyzda, emele gelen eser üçin diňe şu ýa-da şuňa meňzeş lisenziýany ulanmak arkaly paýlap bilersiňiz.
The uploader of this file has agreed to the Wikimedia Foundation 3D patent license: This file and any 3D objects depicted in the file are both my own work. I hereby grant to each user, maker, or distributor of the object depicted in the file a worldwide, royalty-free, fully-paid-up, nonexclusive, irrevocable and perpetual license at no additional cost under any patent or patent application I own now or in the future, to make, have made, use, offer to sell, sell, import, and distribute this file and any 3D objects depicted in the file that would otherwise infringe any claims of any patents I hold now or in the future. Please note that in the event of any differences in meaning or interpretation between the original English version of this license and a translation, the original English version takes precedence. |
Items portrayed in this file
depicts iňlis dili
creator iňlis dili
some value
copyright status iňlis dili
copyrighted iňlis dili
copyright license iňlis dili
inception iňlis dili
14 aprel 2018
source of file iňlis dili
original creation by uploader iňlis dili
Faýlyň taryhy
Faýlyň geçmişini görmek üçin Sene/Wagt bölümündäki senelere tyklaň.
Sene/Wagt | Miniatýura | Ölçegler | Ulanyjy | Teswir | |
---|---|---|---|---|---|
häzirki | 11:04, 14 aprel 2018 | 5 120 × 2 880 (25,07 MB) | Cmglee | User created page with UploadWizard |
Faýlyň ulanylyşy
Bu faýla çykgydy bar bolan sahypa:
Global faýl ulanyşy
Bu faýl aşakdaky beýleki wikiler tarapyndan ulanylýar:
- crh.wikipedia.org sahypasynda ulanyş
- en.wikipedia.org sahypasynda ulanyş
- en.wikiversity.org sahypasynda ulanyş
- myv.wikipedia.org sahypasynda ulanyş
- ro.wikipedia.org sahypasynda ulanyş
- www.wikidata.org sahypasynda ulanyş