Öý
Tötänleýin
Golaýda
Hasaba gir
Sazlamalar
Bagyş et
Wikipediýa hakynda
Jogapkärçilikden boýun gaçyrmak
Gözle
Paskal üçburçlugy
Dil
Gözegçilikde sakla
Düzet
Paskal üçburçlugy
—Binomial koeffisientler we Paskal üçburçlugy şeýle bolsa,
Paskal üçburçlugyň ilkinji 15 setiri (
n
= 0, 1, …, 14)
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
n
−
k
y
k
{\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}y^{k}}
onda
(
n
k
)
=
(
n
−
1
k
−
1
)
+
(
n
−
1
k
)
{\displaystyle {n \choose k}={n-1 \choose k-1}+{n-1 \choose k}}
bolar.
Formula
(
n
k
)
=
n
!
k
!
⋅
(
n
−
k
)
!
=
n
1
⋅
n
−
1
2
⋅
…
⋅
n
−
k
+
1
k
{\displaystyle {n \choose k}={\frac {n!}{k!\cdot (n-k)!}}={\frac {n}{1}}\cdot {\frac {n-1}{2}}\cdot \ldots \cdot {\frac {n-k+1}{k}}}
,
n
,
k
∈
N
0
{\displaystyle n,k\in \mathbb {N} _{0}}
bolsa
Meselem
(
5
3
)
=
5
!
3
!
⋅
2
!
=
5
⋅
4
⋅
3
!
2
!
⋅
3
!
=
5
⋅
4
2
!
=
20
2
=
10
{\displaystyle {5 \choose 3}={\frac {5!}{3!\cdot 2!}}={\frac {5\cdot 4\cdot 3!}{2!\cdot 3!}}={\frac {5\cdot 4}{2!}}={\frac {20}{2}}=10}